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Abstract In the field of theoretical chemistry, we focus on
the sub-discipline of quantum dynamics. Special emphasis
is placed on novel methods which can provide predictions
for medium-sized and large systems and on the difficulties
encountered when facing the huge dimension of the primi-
tive basis within a quantum mechanical framework. We try
to highlight the possibilities of applications of these meth-
ods to atmospheric or astrophysical spectroscopy and organic
chemistry and to bring out general perspectives, in particular
via comparisons with the electronic structure theory.

1 Introduction

Spectroscopic and dynamic accurate calculations focusing on
the motion of the nuclei in molecular systems are a challeng-
ing task in environmental science, astrophysics and chemical
reactivity including phenomena of biological interest [1,2].
The domain of applications encompasses broad areas: photo-
dissociations or excitations, dissociations of an absorbate on
a metal surface, intramolecular vibrational energy redistribu-
tion or predissociation, infrared spectroscopy, inelastic sur-
face scattering, molecular reactive scattering, evolution of a
molecular system exposed to an ultra-short laser pulse, etc. In
general, the corresponding processes involve a limited num-
ber of degrees of freedom with large amplitude motions and
many with rather small ones. It is significant to dwell upon
the fact that the individual steps are often ultrafast, in a time
domain ranging from femtoseconds (fs) to picoseconds (ps).
On the experimental front, decisive progress, in particular
in the field of femto-spectroscopy [3–5] or infra-red/micro-
wave spectroscopy [6–9], allow the scientists to probe chem-
ical phemonema at an atomic level on the real time axis or
to obtain fully resolved spectra of highly excited polyatomic
systems. These ultra-sophisticated experiments require new
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theoretical tools to interpret, predict and, in other words, to
accompany these experimental works. Moreover, it should be
emphasized that these molecular processes generally are sig-
nificantly impacted by nuclear quantum mechanical effects
[10–12] such as tunnelling effects of light atoms through bar-
riers (for instance in the cases of electron or proton transfers),
transitions due to strong vibronic couplings such as coni-
cal intersections which seem to play a crucial role in many
organic or biological systems, interference or zero point en-
ergy effects which are essential when dealing with rovibra-
tional spectra of molecules, etc. Rigorously, one should thus
solve the time-dependent or the time-independent Schröding-
er equations. However, the considerable power of modern
computers notwithstanding, the quantum mechanical treate-
ment of molecular dynamics is a formidable task when more
than (only !) four degrees of freedom have to be taken into
account. Indeed, the numerical effort scales expontentially
with the number of degrees of freedom simply because the
basis set size also grows expontentially with the dimension
of the molecular system. In addition, the approaches and the
corresponding programs devised in dynamics were, up to
now, almost always confined (and optimized) to very spe-
cific physical problems. On the contrary, if we now compare
the molecular dynamics with the electronic structure theory,
it is very striking that general packages based on a quan-
tum mechanical approach (see for instance [13,14]) have al-
ready been routinely utilized for a relatively long time now
by researchers interested in the electronic problem. Further-
more, it is remarkable that these latter programs allow one to
tackle an extremely large field of applications including rel-
atively large systems. Several reasons can be put forward to
explain these differences. First, the resolution of the molec-
ular dynamics problems obviously presupposes the prelimi-
nary resolution of the electronic problem. The simulations of
the dynamics is thus situated ‘downstream’ and necessitates
that ab initio data providing the information regarding the
electronic structure, for instance potential energy surfaces or
various couplings such as the diabatic couplings between the
various electronic states or dipole couplings to laser fields, are
already available. Second, whereas in the electronic theory it
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is always the Coulomb potential which appears, in dynamics
the interaction potentials of molecular dynamics can present
various structures depending on the system, the energy do-
main, and the electronic state(s) to be considered, leading to
myriads of different physical behaviors and often to a strong
correlation. Eventually, as the masses of the nuclei are rel-
atively heavy, the nuclear wave function is, even at low en-
ergy, characterized by large quantum numbers and shows an
oscillatory shape that is awkward to describe numerically. It
can therefore be justifiably supposed that the resolution of
the Schrödinger equation for the nuclei might turn out to be
numerically intractable even when a relatively small number
of degrees of freedom are involved and that the development
of a unified and general quantum mechanical approach that
could routinely treat relatively large systems, remains a very
intricate task which has not untill now been achieved.

The crucial points for the future in dynamics can then be
summarized as follows: development of a general strategy
which is able to take into account the quantum mechanical
effects which are ubiquitous in chemical processes and the
extension of this approach to ever larger systems. Of course,
such problem definitively exceed a the scope of the present
paper. However, the goal of this article is to present sev-
eral novel contributions which have been put forth in the
last 15 years and which could open up possibilities to envi-
sion the simulation of molecular dynamics in an efficient and
more general manner. Here, we confine ourselves to accurate
resolutions of the Schrödinger equation in terms of wave-
functions which cover the full multidimensional domain of
the systems that can be described by approximated Hamilto-
nian operators. In particular, we do not discuss semiclassical
methods [15–18] which describe the quantum effects in terms
of classical trajectories as well as hybrid quantum–classical
methods [19,20] (note only that these latter hybrid quan-
tum–classical methods also need a full quantal treatment of
several degrees of freedom). The remainder of this paper is
as follows. In Sect. 2, several powerful algorithms to solve
the Schrödinger equation for relatively large systems are pre-
sented. Section 3 is devoted to the Hamiltonian operator in
dynamics whose derivation is of upmost importance since it
governs all the physical description of the molecular system.
In Sect. 4 special emphasis is placed on illlustrations of appli-
cations. The paper concludes presenting general perspectives
for the future.

2 Resolution of the Schrödinger equation

The usual quantum treatement of dynamics rests on the Born-
Oppenheimer separation, in which the full molecular prob-
lem is handled in two stages. Within this framework, the
electronic energy and the nuclear-nuclear repulsion are first
solved for several positions of the nuclei. The resulting elec-
tronic energies parametrized by the positions of the nuclei are
referred to as the potential energy surfaces (PES). This hierar-
chic approach is due to the fact that the atomic nuclei are much
more massive than the electrons and then almost fixed with

respect to the moving electrons. In particular, if the kinetic
energy of the nuclei can be really considered as a small pertur-
bation of the electron motion, the adiabatic Born-Oppenhei-
mer approximation which neglects the coupling between the
several PESs can be invoked. This approximation represents
one of the cornerstones of molecular physics and chemis-
try since the PESs directly provide the complete description
of the molecular vibrational dynamics. If the Born-Oppen-
heimer approximation is violated, for example when a coni-
cal intersection appears, the previous hierarchical treatment
is often retained, but the coupling between the PESs must
be explicitly taken into account. The bulk of the processes,
including a strong vibronic coupling, are treated by intro-
ducing suitable diabatic electronic states that may cross as a
function of the nuclear distances [21–24].

When tackling a quantum mechanical subject in dynam-
ics, the study can be performed either in the time-dependent
picture by propagation of a wavepacket, or in the time-inde-
pendent picture by diagonalisation of the Hamiltonian. If the
Hamiltonian is itself time-dependent, the time-dependent ap-
proach is unavoidable. However, if the
Hamiltonian is time-independent both pictures are formally
equivalent. Since the time and energy variables are conjugate
in the same sense that the position and momentum are, the
choice to exploit one of the two pictures mostly depends upon
the numerical efficiency. Indeed, the time-dependent or the
time-independent Schrödinger equations lead to very differ-
ent mathematical problems, namely an initial value problem
or an eigenvalue problem, respectively. The superiority of
one approach over the other depends on the physical sys-
tem and the physical quantities in question. For instance, it
is intuitive to suppose that the quantal motion of the nuclei
in a scattering or half-scattering (e.g. photodissociation) is
more naturally described by working in the time-dependent
frame. Complicated scattering boundary conditions and non
L2-wavefunctions do not appear in the time-dependent pic-
ture. In the same manner, it is reasonable to assume that a
time-independent approach is more suitable for the extrac-
tion of excited state energies with high accuracy since the
uncertainty principle implies that a very long propagation is
needed to obtain high accuracy. However, this kind of asses-
ments must always be qualified since experience proves that
the opposite can be true. For instance, the advent of the fil-
tering method introduced by Neuhauser [25–29] allows one,
to some extent, to accuratly compute individual eigen ener-
gies with a time-dependent approach using a relatively short
propagation. In the same manner, the application of time-
independent scattering theory has been very efficient in deliv-
ering detailed reaction cross-sections – see for instance the
recent works of Chakraborty and Truhlar [30], which show
that time-independent quantum mechanics can also be used
for accurate polyatomic reaction dynamics.

In this section, we present a sample of significant
algorithms which illustrate the present state of the art. Of
course, this presentation is not exhaustive, nor does it pres-
ent a comprehensive survey of the immense amount of exist-
ing literature. As aforementioned, the fundamental problem
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in quantum mechanical studies hampering treatment of large
systems, is the huge size of the primitive basis set which is a
product basis built from 1D bases for each degree of freedom.
In order to attack the exponential scaling of the numerical ef-
fort, several strategies have been developed which are based
on a contraction of the primitive basis. The contracted ba-
sis set is much smaller and replaces the primitive basis set.
If we specifically turn to the time-independent picture, we
can mention, as a first example of a contraction scheme, the
vibrational self consistent field (VSCF) method used by Ger-
ber and coworkers [31–34] or the configuration interaction
(CI)–VCSF approach by Bowman [35]. These methods al-
low one to calculate rovibrational energy levels of polyatomic
molecules beyond the normal modes approximation. The lat-
ter powerful tool rests on a preliminary vibrational-SCF step
which produces a contracted basis set (similar to the orbitals
in the electronic structure theory). This step drastically en-
hances the convergence of the quantum mechanical problem
by reducing the size of the final basis set. Indeed, the SCF
functions take into account both the anharmonic behavior of
each mode of vibration and part of the intermode couplings
through a mean field approximation resulting from a varia-
tional principle. In the Multimode code from Bowman and
co-workers [36,37], the subsequent CI procedure explicitly
brings about the full correlation between the modes yielding
accurate results for five- or six-atom molecules and realis-
tic for much larger systems [38]. Nevertheless, in its usual
implementation, this method relies on a rectilinear defini-
tion of the normal modes, due to their simplicity [39] (the
rectilinear coordinates lead to a very simple kinetic energy
operator). However, this formulation reduces the efficiency
of the method when excited states are of interest, or if overall
rotation is explicitly taken into account because motions of
large amplitude necessitate a treatment in curvilinear coordi-
nates (see Sect. 3). A genuine multiconfigurational SCF (or
MCSCF) vibrational approach similar to the complete active-
space SCF (CASSCF) method used in electronic structure
theory, has also been developed by Liévin and coworkers [40,
41] based on the use of the generalized Brillouin theorem.

Another example of a contraction scheme is the sequen-
tial adiabatic reduction (SAR) method of Bac̆ić and Light
[42] which has emerged as an optimal approach to study ro-
vibrational spectra. In this approach, which is reminiscent of
the Born-Oppenheimer separation, the variables are ordered
by increasing adiabaticity (the hierarchy is chosen according
to the frequency molecular vibrations). If the hierarchy in
the rapidity of the coordinate motions is very pronounced,
this contraction reveals itself as very effective and affords a
very compact final basis set in which the time-independent
Scrödinger equation can be solved as exemplified by the sev-
eral studies of tetra-atomic Van der Waals complexes [43].

In our group in Montpellier, we normally use direct meth-
ods which are also very powerfull tools to study rovibra-
tional spectra (in general for the electronic ground state)
for large systems. By direct method we mean any iterative
approach which only applies the Hamiltonian operator to a
given vector in order to avoid the bottleneck associated when

handling the Hamiltonian matrix. Examples are the Lanczos
diagonalization method [44–47] or the Davidson algorithm
[48,49]. Essential to applying these direct methods is the use
of a pseudospectral approach. Initiated by Feit and Fleck [50],
Kosloff and Kosloff [51] and Light et al. [52], two different
representations (spectral and grid) associated with the Ham-
iltonian operator are employed. In its original formulation,
the kinetic energy part was evaluated in the spectral represen-
tation (plane waves), while a grid was used for the potential.
It should be noted that these two representations are equiv-
alent and related by a unitary transformation (for instance
a multidimensional FFT). In the adequate spectral represen-
tation, the kinetic energy operator can be easily evaluated
(often analytically) and allows one to discard the apparent
singularities which can occur in the kinetic energy operator
(such as for θ = 0, π in the term sin−2 θ∂2/∂ϕ2) [53–56].
In the grid representation, the potential is diagonal. For mol-
ecules with more than three atoms, a contracted basis set
has to be defined: an adiabatic one or an optimization of the
primitive basis set (grid or spectral) by definition of a zero or-
der Hamiltonian for each mode which partially includes the
potential operator and the kinetic energy operator (see for in-
stance [57–59]). We have used such an approach to calculate
infrared spectra of tetra-atomic molecules such as NH3 [60],
HFCO [61], H2CO [49] for instance. Very recently, similar
direct methods coupled with contraction schemes have been
applied by other groups to study the rovibrational spectra of
even larger systems such as CH4 (9 dimensions) [62,63] or
(H2)3 (12 dimensions) [64].

Another approach which can be briefly mentioned is the
canonical Van Vleck perturbation theory applied by Sibert
and co-workers to calculate highly vibrationally excited states
[65]. This approach being based on a perturbative approxi-
mation cures the main drawback of the quantum mechanical
approach, i.e., the fact that the numerical effort scales ex-
pontentially with the number of degrees of freedom. This
approach is not a crude perturbative one, for the Hamilto-
nian has a block diagonal form characterized by one or more
polyad quantum numbers. These integers are chosen such
that the resonance interactions (the Fermi resonances) are not
perturbatively decoupled and treated. When the perturbative
approximation and the definition of the polyads are reason-
able, the canonical Van Vleck perturbation method yields
very accurate results much faster (often by several orders of
magnitude) than the quantum mechanical approaches men-
tioned above as demonstrated for instance in recent applica-
tions to rovibrational spectra penta-atomic systems [66] or
to CH3OH including all the 12 (!) degrees of freedom [67].
Note only that this approach is specifically devoted (at least
up to now) to rovibrational spectra and that it can be some-
times intricate to find one adequate, or several, polyad(s) to
take into account all the couplings which cannot be pertur-
batively treated.

To our knowledge, there are very few full quantum
mechanical methods which are able to achieve the dynamics
studies for larger systems. Pioneering work has been carried
out in the 1990s and technically based on the determination
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of an active space in which the dynamics is studied. The
active space is extracted from the primitive space by the
wave operator method based on the Bloch formalism [68–
70]. This approach has been applied by R. Wyatt, C .Iung
and co-workers [71–79] to perform full 9- and 30-dimen-
sional (!) studies of the spectroscopy and the intramolecular
vibrational energy redistribution (IVR) of HCF3 and ben-
zene, respectively. In these methods, the primitive basis set
can contain billions of states but the active space is limited to
10,000–50,000 states. These pioneering studies were of ut-
most importance since they have demonstrated that relatively
large systems can be tackled within the framework of a full
quantal approach. The spectra of such large systems are ob-
tained by using the Lanczos or filtered Lanczos [80] schemes
in this active space. The time evolution of the wave packet
are obtained by using a Chebychev polynomial expansion of
the evolution operator U(t) [81] within the active space.

Another method we personally apply routinely is the
Heidelberg package [82] of the multi-configuration time
dependent hartree (MCTDH) algorithm devised by H.-D.
Meyer and co-workers [83–86] (see also references [87,88]
for pioneering works concerning a time-dependent multi-
configuration treatment). The MCTDH method also exploits
an active space, but this space is built from time–depen-
dent functions ϕ(q, t), the so-called single-particle functions
(SPFs). The direct product space of the SPFs generates the
MCTDH active space. The MCTDH wavefunction reads

�(Q1, . . . , Qf , t) ≡ �(q1, . . . , qp, t)

=
n1∑

j1

. . .

np∑

jp

Aj1,... ,jp

p∏

κ=1

ϕ
(κ)
jκ

(qκ, t),

(1)

where f denotes the number of degrees of freedom and p the
number of MCTDH particles, also called combined modes.
Here, qκ = (Qκ1, . . . , QκL

) denotes a multi-dimensional
variable accounting for L degrees of freedom (L = L(κ) may
be one for some κ’s and

∑
κ L(κ) = f ). There are nκ SPFs

for the κ’s particle. The equations of motion of these single-
particle functions are obtained by using the Dirac–Frenkel
variational principle – all the single-particle functions ‘see’
mean-fields operators. The variational principle guarantees
that the SPFs are optimal, and thus ensure a fast convergence.
In a sense, this approach is similar to the MCSCF approach
from Liévin [40,41] except that the ‘contracted’ functions
(i.e. the single-particle functions) are now time-dependent.

This time-dependence is of ulmost importance for it intro-
duces a crucial versatility in the basis set – the functions fol-
low the evolving wavepacket and adapt to the shape of the
potential. As pointed out in the introduction, it is precisely
this large variety of structures of the potential in dynamics
which precludes the developement of a general approach. The
introduction of this time-depedent basis set is thus a clever
way to overcome this impediment.

However, the power of this method lies not only in its
flexibility and also in its theoretically solid basis. Indeed,
the result converges to the exact results as the spf basis is

increased in size. Moreover, the Heidelberg package provides
very simple tools to easily control the convergence of the cal-
culation.

The convergence with the number of configurations to-
tally depends upon the correlation. If the coupling between
the various modes is equal to zero, the system is described
straigt-forwardly by one configuration only, even if the behav-
ior for each degree of freedom is very complicated. If the cor-
relation increases, the number of configurations needed for
convergence grows correspondingly. Unfortunately, as men-
tioned in the Introduction, the correlation is often strong in
the problems encountered in dynamics. For this reason ade-
quate coordinates have to be chosen to describe the system.
An adequate set of coordinates can reduce the correlation,
then greatly enhance the convergence of the MCTDH (see
the discussion concerning the choice of the coordinates by
Moiseyev et al. [89, 90]).

Moreover, it should be emphasized that the SPFs may be
multi-dimensional functions so that it is possible to combine
the coordinates which are strongly coupled. The correlation
among the combined degrees of freedom is then fully ac-
counted for at single-particle levels. Only the correlation bet-
weeen the MCTDH-particles must be provided by the multi-
configuration ansatz.

Multi-configuration time dependent Hartree (MCTDH)
is a powerful algorithm designed to solve quantum molec-
ular dynamics of large systems, i.e. systems, for which the
primitive product grid ceases to fit into the computer mem-
ory. An example which demonstrates the power of MCTDH
is the study of the photo-excitation spectrum of pyrazine [91–
94]. Here a 24-dimensional wavepacket was propagated on
two coupled electronic potential energy surfaces (through a
conical intersection).

Multi-configuration time dependent Hartree (MCTDH)
was also applied to the spin-boson model [95] or the multi-
dimensional Henon–Heiles model, a standart test for semi-
classical and other approximate methods which gives rise to
a chaotic behavior high in energy, including up to 32 dimen-
sions [96]. This method has been applied successfully to a
large number of phenomena such as direct photodissocia-
tion [84,97–100], photodissociation on a surface [101,102],
photo-absorption [92,93,103], and pre-dissociation [104].
It has been used to calculate photo-electron [105,106] and
resonance Raman spectra [107]. It has also been applied to
compute cross-sections of both reactive scattering [108–110]
and inelastic molecule-surface scattering [111–114] events.
Cumulative isomerization probabilities and reactions rates
have also been calculated directly using a flux correlation
function [115–118]. Other studies include the electron trans-
fer along a conjugated chain [119], and resonant excitation
by electron impact [120]. As it is a time-dependent method,
including a time-dependent Hamiltonian is a trivial matter.
An example of the sort of process that can then be stud-
ied is laser-driven proton transfer [121]. Finally, combined
with filter diagonalization, it has been even used to calculate
bound-state spectra with a high accuracy (however, only for
tri-atomic systems was it possible to extract a large part of
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the spectrum, for larger systems the filter diagonalization was
used to extract very specific states only) [122,29]. It is also
possible to envision calculating resonances just by adding a
complex absorbing potential [123–127] (which are already
implemented in the MCTDH package [82]) in conjunction
with the filter diagonalization. Recently, we have performed
several simulations of the IVR in the molecules HONO, Tol-
uene and HCF3 [128–131] along with some selective extrac-
tion of specific bound states.

This host of applications of MCTDH stems from the flex-
ibility of the single-particle-function basis set. Finally, Wang
and Thoss [95] recently devised a multilayer formulation of
MCTDH (called ‘cascading’ in [86]). This approach is based
on the same idea that makes MCTDH very attractive – a
better representation obtained through a variational princi-
ple. In the multilayer formulation of MCTDH the single-
particle functions of the original MCTDH themselves are
further expressed, employing a MCTDH expansion on the
single-particle functions:
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Equation 4 shows that cascading may be interpreted as
a MCTDH expansion in the SPFs v

(κ,l)
il

when the coefficient

vector assumes a product form: Aj1,... ,jp
B

(1)
i1,... ,iL

· · · B(L)
i1,... ,iL

.
Wang and Thoss [95] have applied this approach to a spin–
boson model including up to 1000 (!) degrees of freedom.
They have shown that this multilayer formulation of MCTDH
can treat a very large number of degrees of freedom with a
moderate computational effort. These very recent develope-
ments obviously offer very encouraging perspectives for the
future.

Finally, it should be mentioned that the Feynman’s path
integral formulation of time-dependent quantum mechan-
ics [132–134] provides an attractive and equally rigorous
alternative to the resolution of the standard Schrödinger equa-
tion, in particular for studying condensed matter. The limi-
tation due to the prohibitive storage of the multidimensional
wavefunction is then circumvented since quantum mechan-
ical amplitudes are expressed as sums over paths. The two

difficulties of this approach come from the fact that first the
quantum interferences are reproduced by the amplitude along
the path which is a complex-valued phase. As this phase can
exhibit rapid oscillations, this approach requires a very fine
discretization. Second, the number of paths increases expo-
nentially with the number of degrees of freedom and the total
propagation time. However, Makri and coworkers [135–143]
and others [144–147] have shown that this approach can be
a very efficient tool in certain very important situations, in
particular for calculating the dynamics of systems in con-
tact with dissipative baths. Another formulation of the con-
cept of the exact real time dynamics based on the concept
of path integral centroid variables of Feynman has also been
devised by Voth and coworkers [148]. Within the framework
of this centroid molecular dynamics method, several approx-
imations have been applied and they have shown that they
could capture the main quantum effects for condensed phase
dynamical processes [148–153].

3 Hamiltonian operator

Armed with the previous algorithms, we are in a position
to solve the Schrödinger equation for relatively large sys-
tems. However, it is a preliminary basic necessity to have
at one’s disposal a Hamiltonian operator, including the ki-
netic energy and the potential surface(s), which contains the
physics of the molecular system. At this stage, the choice
of the set of coordinates for describing the physical systems
and for expressing the operators is of great importance. In-
deed, as aforementioned, the convergence of the contrac-
tion schemes, which are inescapable to tackle large systems,
strongly depends upon the correlation between the coordi-
nates. An inadequate set of coordinates entails a strong artifi-
cial correlation and thus a very poor convergence. As regards
the ro-vibrational spectroscopy low in energy and around a lo-
cal minimum, the molecule vibrates in a quasi-harmonic way
and a description in rectilinear coordinates (usually normal
rectilinear coordinates) is satisfactory. An advantage of the
rectilinear coordinates comes from these coordinates leading
to a very simple formulation of the kinetic energy operator.
However, when the vibrations become more anharmonic or
in the case of systems with motions of large amplitude such as
isomerizations, dissociations, scattering systems, rectilinear
coordinates must be abandoned altogether and curvi-linear
coordinates employed. Furthermore, the use of curvilinear
coordinates allows one to easily split the coordinates into two
subsystems: the three Euler angles which define the body-
fixed frame and the 3N-6 internal coordinates describing the
deformations of the molecules. This separation is easy when
rectilinear coordinates are used and only when mall ampli-
tude motions are considered. The Eckart Frame then accom-
plishes this separation [39]. This separation facilitates the
construction of the irreducible representations of the rota-
tion group symmetry and thus the reduction of the size of
the calculations. Finally, curvilinear coordinates are gener-
ally the most efficient in describing potential energy surfaces
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since they improve the convergence of the potential energy
expression [154]. Unfortunately, the use of curvilinear coor-
dinates generally leads to far more involved expressions [155,
156] of the kinetic energy operator which are generally very
specific to each particular system [157–159]. In fact, the prob-
lem is not really to derive the kinetic energy operator. Indeed,
a program such as MATHEMATICA [160] can now be used
to analytically evaluate the operators or a numerical compu-
tation of the action of the kinetic operator is also feasible.
Several contributions in this way have been put forth (see
references [161,162] for instance). In order to obtain a gen-
eral quantum mechanical approach in dynamics, the crucial
point is rather to have a relatively simple and general form of
this operator in curvilinear coordinates which can be applied
to a large variety of molecular systems and, above all, which
is well suited for the numerical methods used in dynamics (in
particular, a large number of terms in the operator can dras-
tically slow down the numerical resolution of the Schröding-
er equation). Recently [163–172], a general formulation of
the exact kinetic energy operator based on a polyspherical
parametrization of the N-atom system has been devised. We
have shown that, for a particular family of curvilinear coor-
dinates (the ‘polyspherical coordinates’), a relatively simple
expression of the kinetic energy operator could be explicitely
obtained without resorting to lenghty differentiation calcu-
lations. This expression is valid irrespective of the number
of atoms and the set of vectors : Jacobi, Radau, Valence (the
usual vectors used in chemistry which join one atom to an-
other), satellite, etc or a combination of those. Moreover, it
includes rotation and Coriolis coupling. This general operator
is always separable; i.e., it can be written as a sum of products
of monomode operators. This property can be very profitable
for contraction schemes such as MCTDH: see [128,129] for
an application to a tetra-atomic system HONO, [130,173] for
nine-dimensional calculations with MCTDH in valence coor-
dinates, and other applications with orthogonal coordinates
to tetra-atomic systems [61,49,174] or penta-atomic systems
[62,175,63]. Finally, within this framework, it is very easy to
find the correct spectral basis set which discards all the sin-
gularities which can occur in the kinetic energy operator: see
references [64,169,176–178] for appplications to systems
with four and six atoms. To our knowledge, this approach in
polyspherical coordinates is the first one leading to a gen-
eral expression of the kinetic energy operator in curvilinear
coordinates if we except the well-known Wilson G matrix
formulation [39,179] which is based on a different familly
of coordinates (see [67,66] for very impressive applications
using this Wilson G matrix formulation). Note however that
this latter approach leads the generic expression only for the
valence vectors and does not explicitly provide the rotation
energy and the Coriolis coupling in curvilinear coordinates.
Moreover, the terms cannot be generally expressed as the sum
of products of monomode operators. This last feature can be
a drawback for many numerical methods.

It should be added that the polyspherical approach
presented above can be applied to problems with strong vib-
ronic coupling such as conical intersections [21].To conclude,

the polyspherical approach can be exploited to treat a large
familly of problems in dynamics and the use of curvilinear
coordinates is no longer an obstacle as far as the kinetic en-
ergy operator is concerned at least for the systems accessible
with the current numerical methods. For large systems, the
number of internal coordinates makes a reduction of dimen-
sionality unavoidable. This is true not only for the dynamics
but also, and above all, for the calculation of the potential
operator. By a clever choice of internal coordinates, the sep-
aration into inactive coordinates and active coordinates is
very often possible, so that a reduction of dimensionality can
then be achieved [180,7].A widely used approach is the rigid-
constraint one, which consists in freezing some bond lengths,
angles or entire atomic groups. However, if the internal mo-
tions of these atomic groups have to be explicitly considered,
the rigid model is insufficient and it becomes necessary to
invoke at least an adiabatic model. If curvilinear coordinates
are used, care must be taken when deriving the correct kinetic
energy operator of the system subjected to constraints (rigid
or adiabatic). We refer the reader to [181] for a detailed dis-
cussion on the importance of ‘correction terms’ in the con-
strained models. It is shown that without these corrections
the kinetic energy operator can lead to a completely distor-
ded pattern of ro-vibrational levels in infrared spectroscopy
for instance. In references [182,164,181], the derivation of
rigidly and adiabatically constrained kinetic energy operators
was presented in a full ab initio and general context (see also
[183] for another formulation). The results presented in these
foregoing articles were not specific to the polyspherical coor-
dinates. But, armed with the general expression of the kinetic
energy operator in polyspherical coordinates, we have shown
[172] that it is straigtforward to afford the constrained kinetic
operators for a large variety of systems so that the derivation
of constrained kinetic energy operators in curvilinear coor-
dinates is now feasible for a large field of applications (see
also the works of Lauvergnat and Nauts [162] for a numer-
ical implementation of the same constrained approach). For
instance, the adiabatically constrained model was applied to
the water dimer in a recent paper [184] in which a determi-
nation of the 12D water dimer potential energy surface via
direct inversion of spectroscopic data was reported.

Let us now turn to the potential energy surface. All the
studies in dynamics obviously depend upon having high
quality potential energy surfaces determined by high quality
electronic structure calculations which are represented using
analytical functions. Besides, the potential energy surfaces
and the various couplings must be available in the global do-
main of physical interest. It is not the goal of this paper to
discuss ab initio calculations and global modeling of single-
and multi-sheeted potential energy surfaces which constitute
an entire field by themselves [185–188]. Nevertheless, it is
important to mention two points directly related to our sub-
ject. First, the calculation of global potential energy surfaces
is restricted to systems with only few degrees of freedom
since it requires a prohibitive amount of computing time. It
is extremely important for our purpose to stress that this situ-
ation can be remedied by focusing on phenomena for which
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we assume that only a limited number of degrees of freedom
with large amplitude motions are involved which carry most
of the information. Under these conditions it is reasonable to
invoke simplifying approximations for the other degrees of
freedom which permit the construction of simple model Ham-
iltonians. It should be emphasized that the potential of appli-
cations for such an approach can then be extremely large.
As noticed above for the kinetic energy operator, the reduced
dimensionality (rigidly or adiabatically) constraints are very
widespread (and essential for large systems) and can lead to
accurate results, for instance, in spectroscopy. An improve-
ment of the model can also be envisioned by means of the
reaction path Hamiltonian approaches of Miller and Cowork-
ers [189,190] which makes use of a harmonic approximation
locally defined along one or several reaction coordinates (in
its simplest version, this approach resorts to one or several
reaction coordinates coupled to a frozen bath [190]). Finally,
another very fruitful model has been formulated in the group
of Heidelberg [21,23,24] to tackle multistate-multimode vib-
ronic couplings (see also reference [191,192] if a motion of
large amplitude such as an isomerization is involved). These
examples prove that is not inaccessible to circumvent the
bottleneck associated by calculating global potential energy
surfaces. Second, as aforementioned for the kinetic energy,
It is important to insist on the fact that the potential operators
must also be given in a form which is well adapted to the
numerical methods used in dynamics. For instance, in order
to ensure a fast evaluation of the mean-fields which are built
at every time step, a full efficiency of the MCTDH algorithm
requires the Hamiltonian to be provided as a sum of prod-
ucts of operators, which act on a ‘limited’ number of degrees
of freedom exclusively, or more precisely, which act on an
MCTDH particle which may have 1–4 degrees of freedom

V =
s∑

r=1

cr

p∏

κ=1

v(κ)
r , (5)

where v(κ)
r operates on the κ-th particle (combined mode) and

where the cr are numbers. Note, however, that the correlated
discrete variable representation by Manthe [193] allows one,
to a certain extent, to eliminate this problem for MCTDH, see
also [194] for the disadvantages of this latter approach. The
product form, Eq. 5, is not only useful for MCTDH. Indeed,
in order to avoid the calculation of high-dimensional integrals
and to substantially alleviate the requirement of core memory,
it is necessary (and even essential for large systems) to deal
with operators in which the coordinates are partially decou-
pled as in each term of Eq. 5. For instance, in the the canon-
ical Van Vleck perturbation theory applied by Sibert and co-
workers to CH3OH [67], the Hamiltonian operator is also
rewritten in a direct product form. For a direct method such
as the Lanczos algorithm, the ‘limited’ number of degrees
of freedom in the operators can be of course larger since the
direct method only requests the results of acting the Hamilto-
nian operator on a given vector (not the evaluation of a matrix)
but the difficulty also appears for large systems since the vec-
tor itself becomes very large (see [64] for a discussion about

this point and how to reduce the core memory requirement for
a large system with the Lanczos algorithm). To circumvent
this difficulty in a systematic way, Jäckle and Meyer [195,
196] devised a scheme called potfit, to recast any function into
the required product form. The potential is fitted through an
expansion in natural potentials which show a great similarity
to the SPFs in the expansion of the MCTDH wavefunction.
The original potfit procedure was restricted to the transfor-
mation to products of operators, which act on one degree
of freedom only. Recently [130], we have generalized potfit
to enable us to expand the potential into multi-dimensional
functions and applied it to nine-dimensional problems [130,
173]. In the future, we envisage sharpening this theroreti-
cal tool in order to exploit the potfit procedure to directly fit
ab initio points in a systematic manner within the MCTDH
package from Heidelberg. It is already feasible to interpolate
with potfit the values of the potential energy surfaces even if
they are given on a coarse product grid. The low-dimensional
natural potential terms are then interpolated with either cubic
(bicubic) spline or Fourier-series interpolations.

4 Examples of applications

In the two previous sections, a sample of algorithms have
been presented which allow accurate resolutions of the
Schrödinger equation in terms of wavefunctions, the systems
being described by approximated Hamiltonian operators. To
partially conclude one can say that, on one hand, it is ex-
tremely difficult to conceive that a unique approach could
treat all the phenomena encountered in dynamics. It is clear
that multidimensional quantum reactions dynamics is still
in its beginnings. In particular, if a very high precision for
the calculations is necessary, very specific programs will still
(and probably always) be inescapable. On the other hand, the
existence of a package such as the MCTDH from Heidelberg
[82], which has been applied to almost all the domains in
quantum dynamics, demonstrates that general tools are not
out of reach. MCTDH can indeed optimally tackle a wide area
of problems which are strongly impacted by quantum effects
and do not require an extremely high accuracy (such as calcu-
lations of reaction rate constant involving a proton transfer or
the simulation of spectra strongly affected by a conical inter-
section). But it is also versatile enough to treat problems with
a higher precision. In this latter case, this approach cannot
however replace a specific program if the problem demands
an extremeley high precision. However, one can consider that
the developement of general tools along with particular codes
specific to particular systems is more complementary than
contradictory. In a general way, all these methods require
that the Hamiltonian should be available and they all have an
exponential type of scaling depending on the dimensionality.
It is then reasonable to anticipate that these methods will be
restricted in the near future (say the next 15 years) to systems
including a few degrees of freedom with large amplitude mo-
tion plus possibly a few dozens of degrees of freedom with
near harmonic amplitude motions (note, however, that the
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multilayer formulation of MCTDH by Wang and Thoss [95]
can treat 1000 degrees of freedom with a model Hamilto-
nian). However, it should again be emphasized that the num-
ber of applications within such a general framework could
be extremely large. It is precisely the aim of this section to
illustrate this assessment by presenting a selection of possible
applications of very high chemical interest.

4.1 Intramolecular vibrational-energy redistribution

The first example is the IVR, which is a fundamental energy
transfer mechanism that occurs in all polyatomic molecules
[197,70]. The IVR process can have a decisive influence on
the overall dynamics and reactivity of a molecular system.
The specificity and efficiency of IVR pathways are extremely
diverse depending on the molecular structure of each sys-
tem. At energies just above the threshold for a given bond
dissociation, vibrational energy is required to flow between
vibrational modes into the reaction coordinate. This energy
flow can be the limitating factor in determining the rate of
unimolecular dissociation. It is crucial to determine the time-
scale corresponding to the energy flow through the system. It
is also decisive to modelize this energy flow and to find some
general rules that governs this phenomenon. IVR study aims
at answering questions such as: Starting from a well-defined
initial excitation in the CH stretch, where does the energy
go? How long does it take to get there? To what extend is this
flow state or mode specific? What is the detailed mechanism
leading to this flow? What is the nature of the dynamics that
is induced in the bath modes when they acquire energy from
the hot spot? It is intuitive to think that the energy located at
time t = 0 in a given vibrational mode will be redistributed
in a statistical way through all the vibrational modes of the
system. It is also natural to postulate that the IVR timescale
is directly linked to the state density according to the Fermi
Golden Law. However, different experimental proofs dem-
onstrate that IVR does not necessary increase with the state
density. It is now established that the IVR mechanism is more
subtle and difficult to analyze [8,9]. Morevover the scope of
applications is far larger since the knowledge of the IVR is
an essential prerequisite [198] for the induction of chemi-
cal reactions by means of vibrational mode-selection with
lasers. Indeed, one dream of the chemists [198] is to employ
ultrashort laser pulses to control reactions in a way that only
the desired products occur. Experimentally, it is now feasi-
ble to create optimal ultrafast light pulses which prepare the
targets leading the molecular systems on to a desired reac-
tion path [199,200]. Much theoretical effort must therefore
be directed toward modeling these systems and to further
develop general methods of molecular quantum dynamics
which, coupled with quantum chemistry calculations, could
predict the vibrational states leading to a desired reaction
path. Recently, it was demonstrated that MCTDH is a very
efficient tool to investigate the IVR in relatively large systems
such as HONO (six degrees of freedom) [128,129], Toluene
[130] and Fluoroform (nine degrees of freedom) [131]. For

such systems quantum mechanical effects are very strong
and a quantal approach is crucial to correctly describe the
dynamics. The HONO molecule is characterized by a revers-
ible Cis/Trans isomerization which complicates the dynam-
ics in the molecule [201–203]. We have confirmed that the
Cis/Trans process proceeds faster than the opposite direc-
tion and that there are very large differences between the
energy redistributions after different initial excitations stress-
ing the strong mode selectivity of HONO. In the Fluoroform
and Toluene systems, the energy flow from CH stretching to
the various other modes occurs in very different time-scales
and therefore multiple IVR pathways. For the molecule of
Fluoroform, we have reinvestigated the dominant feature in
the CH overtone spectra, i.e., the strong Fermi resonance
between the CH stretch and the two FCH bends. New simu-
lations very high in energy have been performed establishing
the crucial role played by the FCH bends, which constitute
an energy reservoir. Note that the IVR of the CH chromo-
phore is of high interest since it can be probed in myriads
of molecular environments and has pronounced absorption
signals [204–207]. For Toluene, the situation is even more
complicated since it is not yet clear if the complex struc-
ture of the experimental CH spectra can be ascribed to the
CH stretch-bend Fermi resonance (like for Fluoroforme) or
to a coupling with the almost free internal rotation of the
methyl group [208,209]. Interestingly enough, for HONO
and Toluene (and more recently for HCF3 [173]), we have
implemented the corresponding kinetic energy operators in
polyspherical coordinates. This proves that curvilinear coor-
dinates can be routinely implemented in the MCTDH pack-
age without any technical difficulty. As aformentioned, in
order to simulate the experimental processes, it is manda-
tory to combine the dynamics with quantum chemistry cal-
culations [128,129]. Even more important, we are now in
a position to implement the corresponding dipole momenta
which are available [210] as well as the overall rotation of
the molecules and then to truly simulate the dynamics dur-
ing the interaction with the laser pulses for systems such as
HONO, H2CO, HFCO, HCF3. We have already started such a
simulation including the implementation of the potential and
dipole operators, the kinetic energy in polyspherical coor-
dinates for the H2CS molecule [211] in the MCTDH pack-
age. These works are encouraging since they could show that
it is feasible to develop a systematic study of the IVR and
laser control for numerous molecular sytems and could offer
a precious framework for a synergy between experimenters
and theoreticians in this field. Such joint experimental/the-
oretical studies are essential to establish unambiguously the
connection between the experimental signals that are mea-
sured and the molecular dynamics that is to be observed. Note
finally that we have also recently implemented the calcula-
tion of cumulative reaction probabilities [118] in the Heidel-
berg MCTDH package. The calculation of these quantities
which allows direct computing of thermal reaction constants
[116], could complete these studies in IVR by highlighting
the selectivity of the processes (for instance the Cis/Trans
isomerization in the HONO molecule).



68 F. Gatti

4.2 Towards larger organic and biological systems

This section is dedicated more to our hopes for the future.
In particular, we are convinced that it is now very impor-
tant to explicitly show to the community of chemists our
ability to treat the quantum dynamics of processes of high
chemical interest including motions of large amplitude and
a relatively large number of degrees of freedom. Let us con-
sider two possibilities. First, the homogeneous metal-assited
or -catalyzed reactions [212,213]. The homogeneous metal-
assited or -catalyzed reactions have an oustanding impor-
tance both industrially and synthetically: they yield products
of special interest in large-scale manufacturing or owing to
their properties as powerful drugs, antibiotics, or antican-
cer reagents [214]. For instance, olefin insertion into M–H
bond and the reverse process, the β-hydrogen elimination,
represent elementary reaction steps which are of fundamen-
tal importance to many transition-metal-catalyzed processes
such as hydrogenation, hydroformylation, and olefin poly-
merization [213]. In order to delve into this domain of phe-
nomena several dynamics treatments are necessary. For
instance, it is indeed of high interest to make simulations
which amount to the dynamics after a coherent excitation of
the system to a transition-state structure by a fast optical tran-
sition from hypothetical neutral species and then to calculate
the corresponding spectrum and the speed of the isomeriza-
tion. However, up to now, most of these were based within
a classical mechanical framework although quantal effects
can play a very important role (coherence and tunneling ef-
fects). Recently, Bittner and Köppel [215] have performed the
very first one-dimensional quantal calculation on the system
[CpRh(PH3)H(C2H4)]

+. However, realistic dynamical cal-
culations must incorporate more than one degree of freedom
(let say from three to ten degrees of freedom) to simulate the
insertion of the ethylene into the Rh–H bond and its inverse,
the hydrogen elimination process. To start simulations which
include more degrees of freedom one should derive the con-
strained kinetic energy operator in polyspherical coordinates
[182,164,181]. Most of the degrees of freedom will be fro-
zen, i.e., subjected to rigid constraints, and curvilinear coor-
dinates (here polyspherical coordinates) are to be utilized to
describe the motions of large amplitude. Of course, an exact
quantum calculation of the the full potential energy surface
treating all the internal degrees of freedom is not possible for
the time being, due to the computational demands. However,
here, one bond is broken and another one is formed, whereas
others exhibit rather modest changes. According to the reac-
tion-path profile [215], the chemical reaction involves few
degrees of freedom with very large amplitude motions and
several with rather small ones. Therefore, a locally harmonic
expansion of the energy surface around the minimum energy
surface will be possible for the potential operator as in the
approaches of Miller and coworkers [189,190]. Such stud-
ies are good examples of applications of quantum mechanical
dynamics to systems which could truly interest chemists. Sec-
ond, another class of greatly important and fascinating phe-
nomena are the conversion of light into mechanical motion

at the atomic scale in organic systems. Even more important,
they can be involved in biological phenomena such as the ret-
inal in rhodopsin which is isomerized during the first step in
vision [216–218,192] or the pair porphyrin-quinone, which
forms the basis for photosynthesis [219]. Another example
is the green fluorescent protein [220] from a jellyfish which
allows one to look directly into the inner workings of cells.
Indeed, this protein can be attached to an object that you
are interested in watching (for instance a virus) and you can
then follow the behavior of this object by shining ultraviolet
light since the green fluorescent protein will then glow bright
green. Note that these phenomena can include photo-initiated
ultrafast electron and proton transfers. Until the early 1990s,
the systematic computation of photochemical reaction paths
was unpractical if not impossible. Focusing on a systematic
investigation of the basic organic chromophores, alkenes, iso-
lated and conjugated dienes, polyenes, and others, it was pos-
sible to compute the entire excited-state reaction path starting
at the Franck-Condon structure and often ending at low-lying
conical interections [221–223,219,224,225]. Note that these
conical intersections are known to provide extremely efficient
pathways for fast dynamical molecular processes. It should
be emphasized that the study of these systems is only in its
early stage [192,225,220]. In particular, the calculations are
performed taking into account a ‘chromophore’ in the gas
phase and thus neglecting the protein and solvent environ-
ments. However, such studies constitute the necessary and
very important preliminary basis in order to undertake more
complete simulations including the solvent and the protein
for instance. Since a limited number of degrees of freedom
are involved in these ultrafast photodynamics and since the
quantum yields as well as the direct comparison with time-
resolved spectroscopic measurements can only be realized
out when direct-dynamics results become available, explicit
simulations of the processes are nowadays possible and very
highly desirable and could be performed in a systematic way
in the near future with the Heidelberg MCTDH package [82]
for instance.

4.3 The water clusters

Finally, we would like to discuss a very important but also
very difficult problem: the study of water clusters in order
to highlight the importance of developing quantum mechan-
ical codes dedicated to very particular systems. The study of
water in all phases remains a central activity nowadays since
there is no potential energy surface yet which could perfectly
reproduce the properties of the liquid, solid, and aquous solu-
tions. The difficulty comes from these properties depending
on the hydrogen bonding interactions and their dynamics.
Far-infrared vibration-rotation-tunneling experimental spec-
troscopy has generated a wealth of highly detailed data for
small water clusters [6,7]. The two- and three-body interac-
tions are essential for modeling these condensed phases since
they are the major components of the force field. The accurate
determination of the water pair potential has given rise to a
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close collaboration between Leforestier in our group and R.
J. Saykally and coworkers from Berkeley [7,226]. The deter-
mination of the dimer water potential energy surfaces are
obtained via direct inversion of experimental spectroscopic
data. The method developed by Leforestier for the dynamics,
i.e., the calculation of the rovibrational spectrum associated
with the inter-molecular motions, is based on a time-indepen-
dent direct approach (a ‘pseudospectral split Hamiltonian’
method as described in Sect. 2) using the Lanczos algorithm.
It is important to dwell on the fact that quantum effects on the
nuclear positions, zero-point energy effects or tunneling bar-
riers to hydrogen bond rearrangement, can have a significant
influence on the calculated properties [7]. This work is of par-
ticular interest for our subject for two reasons. First, it illus-
trates the relevance of a constrained approach in a particular
case. Indeed, most of the calculations have been performed
with a rigid monomer description due to the great difference
in the frequencies of vibration between the intramolecular
and intermolecular modes. This rigid constrained approach
has already provided very important results. In addition, we
have recently introduced an adiabatic model to explicitely
consider the internal motions of each monomer (stretches
and bends) [181,184]. The aim is to fit a ‘flexible’ dimer
potential in order to better describe the difference of the OH
length in the different condensed phases. Moreover, the flex-
ibility can be extremely important to study processes such as
vibrational predissociation, or dimerization in the gas phase.
The numerical calculations have already shown that the adi-
abatic flexible approach leads to a much better agreement
with experiment than does the rigid version, as exemplified
by the standard deviation on all observed frequencies being
reduced by a factor 3 [184]. It was then shown that monomer
flexibility is essential in order to reproduce the experimen-
tal transitions. Second, the far-infrared spectroscopy of the
water dimer is probably a representative example of a molec-
ular problem which cannot be treated with a general program.
The water monomers rearrange their hydrogen bonding ori-
entations through quantum tunneling among eight minima.
This effects a splitting of each dimer rovibrational level into a
manifold of tunneling states, these splittings can be very small
(<1.0 cm−1) and are measured precisely by high-resolution
spectroscopy [7]. The experimental data are then extremely
precise and the fitting of the potential necessitates a very
large number of calculations of the full spectrum with such
an accuracy (all the levels must, in addition, be present in each
calculation). That is why a very specific program optimized
for this particular problem was here inescapable.

5 Conclusions and outlook

To conclude, we would like to return to the comparison with
the electronic structure theory. It is noteworthy to point out
that, like in the electronic problem, numerous approaches
based on a variational principle such the (time-dependent
or time-independent) SCF, CI-SCF or CASSCF and even
coulped cluster [227] methods have been developed in

dynamics. Morever, likewise as in the electronic structure
theory the widely known density theory provides an alter-
native to the methods based on a variational principle, the
dynamics of the systems can be handled also by other ap-
proaches. These are based on very different approximations
such as the adiabatic reduction method, the wave operator
method using the Bloch formalism or the Feynman’s path
integral formulation of time-dependent quantum mechanics
described in Sect. 2.Again, as for the eletronic problem, these
quantum mechanical approches are obviously limited to a re-
stricted number of degrees of freedom. Note, however, that
the number of applications, within such a framework, could
be extremely large and we here refer the reader to our ‘partial’
conclusion at the beginning of Sect. 4. For larger systems, it
is thus possible to anticipate the necessity to envision mixed
algorithms as it was necessary to devise methods such as the
quantum mechanics molecular mechanics approach for the
electrons. The remainder of this conclusion is dedicated to
this long-term perspective.

Indeed, as mentioned in the introduction, this paper did
not aim at discussing semiclassical approaches [15,16,19,17,
20] in spite of their great importance in modern dynamics.
It can, however, be remarked that the semiclassical are often
based on a description of the quantum effects in terms of clas-
sical trajectories which offer a better insight into the physical
phenomena. On the one hand, the use of classical trajectories
offers the advantage of better scalings with the dimension-
ality of the systems and could open the possibility of evalu-
ating the potential ‘on the fly’ like in the ab initio molecular
dynamics methods (Car-Parinello molecular dynamics). On
the other hand, the rigorous quantum mechanical methods
presented in this paper lead to exact results and it is then pos-
sible to perfectly estimate and control the convergence. One
can indeed never be certain of the accuracy of an approxi-
mate method except by comparison with the true quantum
mechanical approach (see the work by Jasper and Truhlar
[228] for a very recent systematic comparison between semi-
classical and quantum methods). We may conclude with a
question regarding the developement of a general approach
in quantum dynamics dedicated to carrying out large systems:
is it not the solution for such a general approach to exploit
these two methodologies together? Indeed, the concept of a
‘quantum-semiclassical’ methodology has emerged in arti-
cles by Burghardt and co-workers [229–231] in which the
molecular systems are partitioned into a reactive core com-
posed of a limited number of degrees of freedom which are
treated with an accurate quantum mechanical approach as
in the methods presented in this paper (such as MCTDH or
the the multilayer or cascading formulation of MCTDH) and
a subset of environmental modes which are handled more
approximately (for instance with time-dependent Gaussian
functions [231] or sinc functions [232]). It should be empha-
sized that we are not talking about mixed quantum–classical
approaches which are much older. Such a global approach
has two important underlying properties: it can fully ac-
count for quantum mechanical phase coherence (in contrast
with the previous mixed quantum–classical approches) and it
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can be systematically improved to achieve numerically exact
results by variational optimization of the system-environment
partitioning. Pioneering works recently have demonstrated
that it is possible to study, with such an hybrid quantum-
semiclassical method, a spin–boson model including up to
100 degrees of freedom [233,234]. Note also that the path
integral methods by Makri and coworkers [135,141] men-
tioned in Sect. 2 could also provide an excellent starting
point for the prospect for rigorous quantum-semiclassical
treatments. Generalizing such methods is obviously still an
enormous task. However, we are convinced that such an ap-
proach is a very good way of thinking for the future in quan-
tum dynamics.
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169. Mladenović, M (2000) Rovibrational hamiltonians for gen-
eral polyatomic molecules in spherical polar parametrization. I.
Orthogonal representations. J Chem Phys 112:1070–1081

170. Gatti F, Munoz C, Iung C (2001)A general expression of the exact
kinetic energy operator in polyspherical coordinates. J Chem Phys
114:8275

171. Gatti F, Nauts A (2003) Vector parametrization, partial angular
momenta and unusual commutation relations in molecular phys-
ics. Chem Phys 295:167–174

172. Gatti F, Iung C (2003) Exact and constrained kinetic energy opera-
tors in polyspherical coordinates. J Theor Comp Chem 2:507–522

173. Iung C, Gatti F, Ortiz J-M, Meyer H-D (2004) in preparation
174. Yu H-G, Muckerman JT (2002) J Mol Spec 214:11
175. Yu H-G (2002) J Chem Phys 117:8190
176. Costa LS, Clary DC (2002) J Chem Phys 117:7512
177. Goldfield EM, Gray SK (2002) A quantum dynamics study

of H2+OH→H2O+H employing Wu-Schatz-Lendvay-Fang-
Harding potential function and a four-atom implementation of
the real wave packet method. J Chem Phys 117:1604

178. Lin SY, Guo H (2002) J Chem Phys 117:5183
179. Frederick JH, Woywod C (1999) J Chem Phys 111:7255
180. van der Avoird A, Wormer PES, Moszynski R (1994) Chem Rev

94:1931
181. Gatti F (2003) Flexible monomer formulation for non-rigid sys-

tems. Chem Phys Lett 373:146–152
182. Nauts A, Chapuisat X (1987) Chem Phys Lett 136:164
183. Hadder JE, Frederick JH (1992) J Chem Phys 97:3500
184. Leforestier C, Gatti F, Fellers RS, Saykally RJ (2002) J Chem

Phys 117:8710
185. Thompson KC, Jordan MJT, Collins MA (1998) Polyatomic

molecular potential energy surfaces by interpolation in local inter-
nal coordinates. J Chem Phys 108:8302–8316

186. Crespos C, Collins MA, Pijper E, Kroes GJ (2003) Chem Phys
Lett 376:566

187. Crespos C, Collins MA, Pijper E, Kroes GJ (2004) J Chem Phys
120:2392

188. Varandas AJC (2004) Modeling and interpolation of global multi-
sheeted potential energy surfaces. In: Domcke W, Yarkony DR,
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